Monday, November 30, 2015

p. 625: 5, 6, 7, 10, 13, 16, 23, 24, 27, 29, 31, 35

Problem 5

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$.
Solution. The series is alternating with $a_{n}=\frac{1}{n+1}$. It is clear that $a_{n+1}<a_{n}$ and that $\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$. Therefore, by the Alternating Series Test, the series converges.

Problem 6

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{3 n+2}$.
Solution. Use the Divergence Test. $\lim _{n \rightarrow \infty} \frac{n}{3 n+2}=\frac{1}{3} \neq 0$. Therefore, the series diverges.

Problem 7

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n}}$.
Solution. This is a geometric series with $r=-\frac{1}{3}$. Because $|r|<1$, the series converges. In fact, it converges to $-\frac{1}{4}$.

Problem 10

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{n^{2}+5}$.
Solution. This is an alternating series with $a_{n}=\frac{n}{n^{2}+5}$. Check that $a_{n+1}<a_{n}$.

$$
\begin{aligned}
a_{n+1} & <a_{n} \\
\frac{n+1}{(n+1)^{2}+5} & <\frac{n}{n^{2}+5} \\
(n+1)\left(n^{2}+5\right) & <n\left((n+1)^{2}+5\right) \\
n^{3}+n^{2}+5 n+5 & <n^{3}+2 n^{2}+6 n \\
5 & <n^{2}+n,
\end{aligned}
$$

which is true for all $n \geq 2$ (which is sufficient). Now check that $\lim _{n \rightarrow \infty} a_{n}=0$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{n}{n^{2}+5} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n+\frac{5}{n}} \\
& =0 .
\end{aligned}
$$

Therefore, the series converges.

Problem 13

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$.
Solution. This is an alternating series with $a_{n}=\frac{1}{\sqrt{n}}$. It is clear that $a_{n+1}<a_{n}$ and that $\lim _{n \rightarrow \infty} a_{n}=0$. Therefore, the series converges.

Problem 16

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \ln (n+1)}{n+1}$. Solution. This is an alternating series with $a_{n}=\frac{\ln (n+1)}{n+1}$. Check that $a_{n+1}<a_{n}$.

$$
\begin{aligned}
a_{n+1} & <a_{n} \\
\frac{\ln (n+2)}{n+2} & <\frac{\ln (n+1)}{n+1} \\
(n+1) \ln (n+2) & <(n+2) \ln (n+1) .
\end{aligned}
$$

Hmmm. . . finishing that argument could be tricky, like real tricky. Let's try a different approach. Let $f(x)=\frac{\ln x}{x}$ and show that $f(x)$ is decreasing for all x greater than some real number.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{1}{x} \cdot x-\ln x \cdot 1}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}} .
\end{aligned}
$$

Clearly, $f^{\prime}(x)<0$ whenever $1-\ln x<0$, which is whenever $x>e$. Therefore, the terms of the series are decreasing whenever $n+1>e$, i.e., whenever $n>e-1 \approx 1.7$.

Now check that $\lim _{n \rightarrow \infty} a_{n}=0$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{n+1} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{1} \text { (L'Hôpital's Rule) } \\
& =0
\end{aligned}
$$

Therefore, the series converges.

Problem 23

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$.
Solution. This is an alternating series with $a_{n}=\frac{n!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$. Rewrite a_{n} as $\left(\frac{1}{1}\right)\left(\frac{2}{3}\right)\left(\frac{3}{5}\right) \cdots\left(\frac{n}{2 n-1}\right)$. This makes it clear that $a_{n+1}=\left(\frac{n+1}{2 n+1}\right) a_{n}$. Because $\frac{n+1}{2 n+1}<1$, it follows that $a_{n+1}<a_{n}$.

Let's postpone this problem to the section on the Ratio Test, where it will be much easier to solve.

Problem 24

Problem. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{1 \cdot 4 \cdot 7 \cdots(3 n-2)}$.
Solution. Let's postpone this problem to the section on the Ratio Test, where it will be much easier to solve.

Problem 27

Problem. Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} 5}{n!}$ by using the first six terms. Solution. Calculate

$$
\begin{aligned}
\sum_{n=1}^{6} \frac{(-1)^{n} 5}{n!} & =\frac{5}{1!}-\frac{5}{2!}+\frac{5}{3!}-\frac{5}{4!}+\frac{5}{5!}-\frac{5}{6!} \\
& =\frac{5}{1}-\frac{5}{2}+\frac{5}{6}-\frac{5}{24}+\frac{5}{120}-\frac{5}{720} \\
& =8.59027 \ldots
\end{aligned}
$$

Problem 29

Problem. Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2}{n^{3}}$ by using the first six terms. Solution. Calculate

$$
\begin{aligned}
\sum_{n=1}^{6} \frac{(-1)^{n+1} 2}{n^{3}} & =\frac{2}{1^{3}}-\frac{2}{2^{3}}+\frac{2}{3^{3}}-\frac{2}{4^{3}}+\frac{2}{5^{3}}-\frac{2}{6^{3}} \\
& =\frac{2}{1}-\frac{2}{8}+\frac{2}{27}-\frac{2}{64}+\frac{2}{125}-\frac{2}{216} \\
& =1.79956 \ldots
\end{aligned}
$$

Problem 31

Problem. Use Theorem 9.15 to determine the number of terms required to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}$ with an error of less than 0.001.
Solution. We need the remainder R (i.e., the maximum error) to be less than 0.001 . We know from Theorem 9.15 that $\left|R_{N}\right|<a_{N+1}$. Thus, we need to find the first term whose value is less than 0.001 . We can find such N by solving the inequality

$$
\begin{aligned}
\frac{1}{(N+1)^{3}} & <0.001 . \\
\frac{1}{(N+1)^{3}} & <0.001 \\
(N+1)^{3} & >1000 \\
N+1 & >10 \\
N & >9
\end{aligned}
$$

Therefore, 10 terms suffice. We find that $S_{10}=0.90174 \ldots$

Problem 35

Problem. Use Theorem 9.15 to determine the number of terms required to approximate the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$ with an error of less than 0.001 .

Solution. We need the remainder R (i.e., the maximum error) to be less than 0.001 . We know from Theorem 9.15 that $\left|R_{N}\right|<a_{N+1}$. Thus, we need to find the first term whose value is less than 0.001 . We can do that by trial and error.

n	a_{n}
0	$a_{0}=\frac{1}{0!}=1$
1	$a_{1}=\frac{1}{1!}=1$
2	$a_{2}=\frac{1}{2!}=0.5$
3	$a_{3}=\frac{1}{3!}=0.16666 \ldots$
4	$a_{4}=\frac{1}{4!}=0.04166 \ldots$
5	$a_{5}=\frac{1}{5!}=0.00833 \ldots$
6	$a_{6}=\frac{1}{6!}=0.00138 \ldots$
7	$a_{7}=\frac{1}{7!}=0.00019 \ldots$

Therefore, 7 terms suffice. We find that $S_{7}=0.36785 \ldots$

